Metamath Proof Explorer


Theorem ghomidOLD

Description: Obsolete version of ghmid as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ghomidOLD.1 𝑈 = ( GId ‘ 𝐺 )
ghomidOLD.2 𝑇 = ( GId ‘ 𝐻 )
Assertion ghomidOLD ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹𝑈 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 ghomidOLD.1 𝑈 = ( GId ‘ 𝐺 )
2 ghomidOLD.2 𝑇 = ( GId ‘ 𝐻 )
3 eqid ran 𝐺 = ran 𝐺
4 3 1 grpoidcl ( 𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺 )
5 4 3ad2ant1 ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝑈 ∈ ran 𝐺 )
6 5 5 jca ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺 ) )
7 3 ghomlinOLD ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺 ) ) → ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹 ‘ ( 𝑈 𝐺 𝑈 ) ) )
8 6 7 mpdan ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹 ‘ ( 𝑈 𝐺 𝑈 ) ) )
9 3 1 grpolid ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺 ) → ( 𝑈 𝐺 𝑈 ) = 𝑈 )
10 4 9 mpdan ( 𝐺 ∈ GrpOp → ( 𝑈 𝐺 𝑈 ) = 𝑈 )
11 10 fveq2d ( 𝐺 ∈ GrpOp → ( 𝐹 ‘ ( 𝑈 𝐺 𝑈 ) ) = ( 𝐹𝑈 ) )
12 11 3ad2ant1 ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 ‘ ( 𝑈 𝐺 𝑈 ) ) = ( 𝐹𝑈 ) )
13 8 12 eqtrd ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹𝑈 ) )
14 eqid ran 𝐻 = ran 𝐻
15 3 14 elghomOLD ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) → ( 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ↔ ( 𝐹 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺 ( ( 𝐹𝑥 ) 𝐻 ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) )
16 15 biimp3a ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺 ( ( 𝐹𝑥 ) 𝐻 ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) )
17 16 simpld ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : ran 𝐺 ⟶ ran 𝐻 )
18 17 5 ffvelrnd ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹𝑈 ) ∈ ran 𝐻 )
19 14 2 grpoid ( ( 𝐻 ∈ GrpOp ∧ ( 𝐹𝑈 ) ∈ ran 𝐻 ) → ( ( 𝐹𝑈 ) = 𝑇 ↔ ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹𝑈 ) ) )
20 19 ex ( 𝐻 ∈ GrpOp → ( ( 𝐹𝑈 ) ∈ ran 𝐻 → ( ( 𝐹𝑈 ) = 𝑇 ↔ ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹𝑈 ) ) ) )
21 20 3ad2ant2 ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( 𝐹𝑈 ) ∈ ran 𝐻 → ( ( 𝐹𝑈 ) = 𝑇 ↔ ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹𝑈 ) ) ) )
22 18 21 mpd ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( 𝐹𝑈 ) = 𝑇 ↔ ( ( 𝐹𝑈 ) 𝐻 ( 𝐹𝑈 ) ) = ( 𝐹𝑈 ) ) )
23 13 22 mpbird ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹𝑈 ) = 𝑇 )