Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gicen.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| gicen.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | gicen | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gicen.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gicen.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | brgic | ⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ) | |
| 4 | n0 | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
| 5 | 1 2 | gimf1o | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑓 : 𝐵 –1-1-onto→ 𝐶 ) | 
| 6 | 1 | fvexi | ⊢ 𝐵 ∈ V | 
| 7 | 6 | f1oen | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐶 → 𝐵 ≈ 𝐶 ) | 
| 8 | 5 7 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐵 ≈ 𝐶 ) | 
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐵 ≈ 𝐶 ) | 
| 10 | 4 9 | sylbi | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ → 𝐵 ≈ 𝐶 ) | 
| 11 | 3 10 | sylbi | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶 ) |