Metamath Proof Explorer


Theorem gicen

Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses gicen.b 𝐵 = ( Base ‘ 𝑅 )
gicen.c 𝐶 = ( Base ‘ 𝑆 )
Assertion gicen ( 𝑅𝑔 𝑆𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 gicen.b 𝐵 = ( Base ‘ 𝑅 )
2 gicen.c 𝐶 = ( Base ‘ 𝑆 )
3 brgic ( 𝑅𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ )
4 n0 ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) )
5 1 2 gimf1o ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑓 : 𝐵1-1-onto𝐶 )
6 1 fvexi 𝐵 ∈ V
7 6 f1oen ( 𝑓 : 𝐵1-1-onto𝐶𝐵𝐶 )
8 5 7 syl ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐵𝐶 )
9 8 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐵𝐶 )
10 4 9 sylbi ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ → 𝐵𝐶 )
11 3 10 sylbi ( 𝑅𝑔 𝑆𝐵𝐶 )