Metamath Proof Explorer


Theorem gicqusker

Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses gicqusker.1 0 = ( 0g𝐻 )
gicqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
gicqusker.k 𝐾 = ( 𝐹 “ { 0 } )
gicqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
gicqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
Assertion gicqusker ( 𝜑𝑄𝑔 𝐻 )

Proof

Step Hyp Ref Expression
1 gicqusker.1 0 = ( 0g𝐻 )
2 gicqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 gicqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 gicqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 gicqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
6 imaeq2 ( 𝑝 = 𝑞 → ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
7 6 unieqd ( 𝑝 = 𝑞 ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
8 7 cbvmptv ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
9 1 2 3 4 8 5 ghmqusker ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) )
10 brgici ( ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) → 𝑄𝑔 𝐻 )
11 9 10 syl ( 𝜑𝑄𝑔 𝐻 )