Step |
Hyp |
Ref |
Expression |
1 |
|
gicqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
gicqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
3 |
|
gicqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
gicqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
gicqusker.s |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
6 |
|
imaeq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝐹 “ 𝑝 ) = ( 𝐹 “ 𝑞 ) ) |
7 |
6
|
unieqd |
⊢ ( 𝑝 = 𝑞 → ∪ ( 𝐹 “ 𝑝 ) = ∪ ( 𝐹 “ 𝑞 ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
9 |
1 2 3 4 8 5
|
ghmqusker |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) ) |
10 |
|
brgici |
⊢ ( ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) → 𝑄 ≃𝑔 𝐻 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑄 ≃𝑔 𝐻 ) |