| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgic |
⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ) |
| 2 |
|
n0 |
⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ) |
| 3 |
1 2
|
bitri |
⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ) |
| 4 |
|
fvexd |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ∈ V ) |
| 5 |
|
fvexd |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑆 ) ∈ V ) |
| 6 |
|
vex |
⊢ 𝑎 ∈ V |
| 7 |
6
|
imaex |
⊢ ( 𝑎 “ 𝑏 ) ∈ V |
| 8 |
7
|
2a1i |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑎 “ 𝑏 ) ∈ V ) ) |
| 9 |
6
|
cnvex |
⊢ ◡ 𝑎 ∈ V |
| 10 |
9
|
imaex |
⊢ ( ◡ 𝑎 “ 𝑐 ) ∈ V |
| 11 |
10
|
2a1i |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) → ( ◡ 𝑎 “ 𝑐 ) ∈ V ) ) |
| 12 |
|
gimghm |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 13 |
|
ghmima |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 14 |
12 13
|
sylan |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 17 |
15 16
|
gimf1o |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 18 |
|
f1of1 |
⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 20 |
15
|
subgss |
⊢ ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) → 𝑏 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 |
|
f1imacnv |
⊢ ( ( 𝑎 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑅 ) ) → ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) = 𝑏 ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) = 𝑏 ) |
| 23 |
22
|
eqcomd |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) |
| 24 |
14 23
|
jca |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) |
| 25 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ) ) |
| 26 |
|
imaeq2 |
⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( ◡ 𝑎 “ 𝑐 ) = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ↔ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) |
| 28 |
25 27
|
anbi12d |
⊢ ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ↔ ( ( 𝑎 “ 𝑏 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ ( 𝑎 “ 𝑏 ) ) ) ) ) |
| 29 |
24 28
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝑐 = ( 𝑎 “ 𝑏 ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 30 |
29
|
impr |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) → ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) |
| 31 |
|
ghmpreima |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 32 |
12 31
|
sylan |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 33 |
|
f1ofo |
⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
| 34 |
17 33
|
syl |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
| 35 |
16
|
subgss |
⊢ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) → 𝑐 ⊆ ( Base ‘ 𝑆 ) ) |
| 36 |
|
foimacnv |
⊢ ( ( 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ∧ 𝑐 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) = 𝑐 ) |
| 37 |
34 35 36
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) = 𝑐 ) |
| 38 |
37
|
eqcomd |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) |
| 39 |
32 38
|
jca |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 40 |
|
eleq1 |
⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ) ) |
| 41 |
|
imaeq2 |
⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑎 “ 𝑏 ) = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑐 = ( 𝑎 “ 𝑏 ) ↔ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 43 |
40 42
|
anbi12d |
⊢ ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ↔ ( ( ◡ 𝑎 “ 𝑐 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ ( ◡ 𝑎 “ 𝑐 ) ) ) ) ) |
| 44 |
39 43
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝑏 = ( ◡ 𝑎 “ 𝑐 ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) ) |
| 45 |
44
|
impr |
⊢ ( ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) → ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ) |
| 46 |
30 45
|
impbida |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( ( 𝑏 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑐 = ( 𝑎 “ 𝑏 ) ) ↔ ( 𝑐 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑏 = ( ◡ 𝑎 “ 𝑐 ) ) ) ) |
| 47 |
4 5 8 11 46
|
en2d |
⊢ ( 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |
| 48 |
47
|
exlimiv |
⊢ ( ∃ 𝑎 𝑎 ∈ ( 𝑅 GrpIso 𝑆 ) → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |
| 49 |
3 48
|
sylbi |
⊢ ( 𝑅 ≃𝑔 𝑆 → ( SubGrp ‘ 𝑅 ) ≈ ( SubGrp ‘ 𝑆 ) ) |