Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicsym | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brgic | ⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
| 3 | gimcnv | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → ◡ 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) ) | |
| 4 | brgici | ⊢ ( ◡ 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) → 𝑆 ≃𝑔 𝑅 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ≃𝑔 𝑅 ) | 
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ≃𝑔 𝑅 ) | 
| 7 | 2 6 | sylbi | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ → 𝑆 ≃𝑔 𝑅 ) | 
| 8 | 1 7 | sylbi | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅 ) |