Metamath Proof Explorer


Theorem gicsym

Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gicsym ( 𝑅𝑔 𝑆𝑆𝑔 𝑅 )

Proof

Step Hyp Ref Expression
1 brgic ( 𝑅𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ )
2 n0 ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) )
3 gimcnv ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) )
4 brgici ( 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) → 𝑆𝑔 𝑅 )
5 3 4 syl ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆𝑔 𝑅 )
6 5 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆𝑔 𝑅 )
7 2 6 sylbi ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ → 𝑆𝑔 𝑅 )
8 1 7 sylbi ( 𝑅𝑔 𝑆𝑆𝑔 𝑅 )