Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | gicsym | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic | ⊢ ( 𝑅 ≃𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ) | |
2 | n0 | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) ) | |
3 | gimcnv | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → ◡ 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) ) | |
4 | brgici | ⊢ ( ◡ 𝑓 ∈ ( 𝑆 GrpIso 𝑅 ) → 𝑆 ≃𝑔 𝑅 ) | |
5 | 3 4 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ≃𝑔 𝑅 ) |
6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ≃𝑔 𝑅 ) |
7 | 2 6 | sylbi | ⊢ ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ → 𝑆 ≃𝑔 𝑅 ) |
8 | 1 7 | sylbi | ⊢ ( 𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅 ) |