| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gidval.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | elex | ⊢ ( 𝐺  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 3 |  | rneq | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  ran  𝐺 ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  𝑋 ) | 
						
							| 5 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑢 𝑔 𝑥 )  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ↔  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 7 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 𝑢 )  =  ( 𝑥 𝐺 𝑢 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥 𝑔 𝑢 )  =  𝑥  ↔  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 9 | 6 8 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ( 𝑥 𝑔 𝑢 )  =  𝑥 )  ↔  ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 10 | 4 9 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  ran  𝑔 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ( 𝑥 𝑔 𝑢 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 11 | 4 10 | riotaeqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ℩ 𝑢  ∈  ran  𝑔 ∀ 𝑥  ∈  ran  𝑔 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ( 𝑥 𝑔 𝑢 )  =  𝑥 ) )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 12 |  | df-gid | ⊢ GId  =  ( 𝑔  ∈  V  ↦  ( ℩ 𝑢  ∈  ran  𝑔 ∀ 𝑥  ∈  ran  𝑔 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ( 𝑥 𝑔 𝑢 )  =  𝑥 ) ) ) | 
						
							| 13 |  | riotaex | ⊢ ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) )  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( GId ‘ 𝐺 )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝐺  ∈  𝑉  →  ( GId ‘ 𝐺 )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) |