Step |
Hyp |
Ref |
Expression |
1 |
|
gim0to0ALT.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
2 |
|
gim0to0ALT.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
gim0to0ALT.n |
⊢ 𝑁 = ( 0g ‘ 𝑆 ) |
4 |
|
gim0to0ALT.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
gimghm |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
6 |
1 2
|
gimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
7 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
9 |
5 8
|
jca |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
10 |
9
|
anim1i |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) ) |
11 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ↔ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) ) |
12 |
10 11
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ) |
13 |
1 2 3 4
|
f1ghm0to0 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑁 ↔ 𝑋 = 0 ) ) |