Metamath Proof Explorer


Theorem gim0to0

Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses gim0to0ALT.a 𝐴 = ( Base ‘ 𝑅 )
gim0to0ALT.b 𝐵 = ( Base ‘ 𝑆 )
gim0to0ALT.n 𝑁 = ( 0g𝑆 )
gim0to0ALT.0 0 = ( 0g𝑅 )
Assertion gim0to0 ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 gim0to0ALT.a 𝐴 = ( Base ‘ 𝑅 )
2 gim0to0ALT.b 𝐵 = ( Base ‘ 𝑆 )
3 gim0to0ALT.n 𝑁 = ( 0g𝑆 )
4 gim0to0ALT.0 0 = ( 0g𝑅 )
5 gimghm ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
6 1 2 gimf1o ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴1-1-onto𝐵 )
7 f1of1 ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )
8 6 7 syl ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐴1-1𝐵 )
9 5 8 jca ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) )
10 9 anim1i ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋𝐴 ) → ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑋𝐴 ) )
11 df-3an ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ↔ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑋𝐴 ) )
12 10 11 sylibr ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋𝐴 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) )
13 1 2 3 4 f1ghm0to0 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )
14 12 13 syl ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )