| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gim0to0.a | ⊢ 𝐴  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | gim0to0.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | gim0to0.n | ⊢ 𝑁  =  ( 0g ‘ 𝑆 ) | 
						
							| 4 |  | gim0to0.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | gimghm | ⊢ ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 6 | 1 2 | gimf1o | ⊢ ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 7 |  | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 9 | 5 8 | jca | ⊢ ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  →  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 10 | 9 | anim1i | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 11 |  | df-3an | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  ↔  ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 13 | 1 2 4 3 | f1ghm0to0 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =  𝑁  ↔  𝑋  =   0  ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpIso  𝑆 )  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  =  𝑁  ↔  𝑋  =   0  ) ) |