Metamath Proof Explorer


Theorem gimco

Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gimco ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) )

Proof

Step Hyp Ref Expression
1 isgim2 ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ↔ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) )
2 isgim2 ( 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ↔ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) )
3 ghmco ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) )
4 cnvco ( 𝐹𝐺 ) = ( 𝐺 𝐹 )
5 ghmco ( ( 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) → ( 𝐺 𝐹 ) ∈ ( 𝑈 GrpHom 𝑆 ) )
6 5 ancoms ( ( 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ( 𝐺 𝐹 ) ∈ ( 𝑈 GrpHom 𝑆 ) )
7 4 6 eqeltrid ( ( 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) )
8 3 7 anim12i ( ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) )
9 8 an4s ( ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( 𝑈 GrpHom 𝑇 ) ) ∧ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) )
10 1 2 9 syl2anb ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) )
11 isgim2 ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) ↔ ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( 𝑈 GrpHom 𝑆 ) ) )
12 10 11 sylibr ( ( 𝐹 ∈ ( 𝑇 GrpIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpIso 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GrpIso 𝑈 ) )