| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgim2 | ⊢ ( 𝐹  ∈  ( 𝑇  GrpIso  𝑈 )  ↔  ( 𝐹  ∈  ( 𝑇  GrpHom  𝑈 )  ∧  ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 ) ) ) | 
						
							| 2 |  | isgim2 | ⊢ ( 𝐺  ∈  ( 𝑆  GrpIso  𝑇 )  ↔  ( 𝐺  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 ) ) ) | 
						
							| 3 |  | ghmco | ⊢ ( ( 𝐹  ∈  ( 𝑇  GrpHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 ) ) | 
						
							| 4 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝐺 )  =  ( ◡ 𝐺  ∘  ◡ 𝐹 ) | 
						
							| 5 |  | ghmco | ⊢ ( ( ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 ) )  →  ( ◡ 𝐺  ∘  ◡ 𝐹 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 )  ∧  ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 ) )  →  ( ◡ 𝐺  ∘  ◡ 𝐹 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) | 
						
							| 7 | 4 6 | eqeltrid | ⊢ ( ( ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 )  ∧  ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 ) )  →  ◡ ( 𝐹  ∘  𝐺 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) | 
						
							| 8 | 3 7 | anim12i | ⊢ ( ( ( 𝐹  ∈  ( 𝑇  GrpHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  ( ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 )  ∧  ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 ) ) )  →  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ◡ ( 𝐹  ∘  𝐺 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) ) | 
						
							| 9 | 8 | an4s | ⊢ ( ( ( 𝐹  ∈  ( 𝑇  GrpHom  𝑈 )  ∧  ◡ 𝐹  ∈  ( 𝑈  GrpHom  𝑇 ) )  ∧  ( 𝐺  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ◡ 𝐺  ∈  ( 𝑇  GrpHom  𝑆 ) ) )  →  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ◡ ( 𝐹  ∘  𝐺 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) ) | 
						
							| 10 | 1 2 9 | syl2anb | ⊢ ( ( 𝐹  ∈  ( 𝑇  GrpIso  𝑈 )  ∧  𝐺  ∈  ( 𝑆  GrpIso  𝑇 ) )  →  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ◡ ( 𝐹  ∘  𝐺 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) ) | 
						
							| 11 |  | isgim2 | ⊢ ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpIso  𝑈 )  ↔  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ◡ ( 𝐹  ∘  𝐺 )  ∈  ( 𝑈  GrpHom  𝑆 ) ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹  ∈  ( 𝑇  GrpIso  𝑈 )  ∧  𝐺  ∈  ( 𝑆  GrpIso  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpIso  𝑈 ) ) |