Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gimfn | ⊢ GrpIso Fn ( Grp × Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gim | ⊢ GrpIso = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) | |
2 | ovex | ⊢ ( 𝑠 GrpHom 𝑡 ) ∈ V | |
3 | 2 | rabex | ⊢ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ∈ V |
4 | 1 3 | fnmpoi | ⊢ GrpIso Fn ( Grp × Grp ) |