Metamath Proof Explorer


Theorem gimfn

Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion gimfn GrpIso Fn ( Grp × Grp )

Proof

Step Hyp Ref Expression
1 df-gim GrpIso = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } )
2 ovex ( 𝑠 GrpHom 𝑡 ) ∈ V
3 2 rabex { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ∈ V
4 1 3 fnmpoi GrpIso Fn ( Grp × Grp )