Description: An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimghm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | 1 2 | isgim | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) | 
| 4 | 3 | simplbi | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |