| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							glb0.g | 
							⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							glb0.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							biid | 
							⊢ ( ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  ↔  ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							⊢ ( 𝐾  ∈  OP  →  𝐾  ∈  OP )  | 
						
						
							| 7 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ( Base ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝐾  ∈  OP  →  ∅  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								3 4 1 5 6 8
							 | 
							glbval | 
							⊢ ( 𝐾  ∈  OP  →  ( 𝐺 ‘ ∅ )  =  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  | 
						
						
							| 10 | 
							
								3 2
							 | 
							op1cl | 
							⊢ ( 𝐾  ∈  OP  →   1   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ral0 | 
							⊢ ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  | 
						
						
							| 12 | 
							
								11
							 | 
							a1bi | 
							⊢ ( 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔  ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ralbii | 
							⊢ ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ral0 | 
							⊢ ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  | 
						
						
							| 15 | 
							
								14
							 | 
							biantrur | 
							⊢ ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 )  ↔  ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							bitri | 
							⊢ ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔  ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  | 
						
						
							| 17 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →   1   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =   1   →  ( 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔   1  ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							rspcv | 
							⊢ (  1   ∈  ( Base ‘ 𝐾 )  →  ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  →   1  ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  →   1  ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 21 | 
							
								3 4 2
							 | 
							op1le | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  (  1  ( le ‘ 𝐾 ) 𝑥  ↔  𝑥  =   1  ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibd | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  →  𝑥  =   1  ) )  | 
						
						
							| 23 | 
							
								3 4 2
							 | 
							ople1 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  𝑧 ( le ‘ 𝐾 )  1  )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantlr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  𝑧 ( le ‘ 𝐾 )  1  )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑧  ∈  ( Base ‘ 𝐾 )  →  𝑧 ( le ‘ 𝐾 )  1  ) )  | 
						
						
							| 26 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =   1   →  ( 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔  𝑧 ( le ‘ 𝐾 )  1  ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							biimprcd | 
							⊢ ( 𝑧 ( le ‘ 𝐾 )  1   →  ( 𝑥  =   1   →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							syl6 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑧  ∈  ( Base ‘ 𝐾 )  →  ( 𝑥  =   1   →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							com23 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑥  =   1   →  ( 𝑧  ∈  ( Base ‘ 𝐾 )  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ralrimdv | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑥  =   1   →  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							impbid | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥  ↔  𝑥  =   1  ) )  | 
						
						
							| 32 | 
							
								16 31
							 | 
							bitr3id | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  ↔  𝑥  =   1  ) )  | 
						
						
							| 33 | 
							
								10 32
							 | 
							riota5 | 
							⊢ ( 𝐾  ∈  OP  →  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )  =   1  )  | 
						
						
							| 34 | 
							
								9 33
							 | 
							eqtrd | 
							⊢ ( 𝐾  ∈  OP  →  ( 𝐺 ‘ ∅ )  =   1  )  |