Metamath Proof Explorer


Theorem glbcl

Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbc.b 𝐵 = ( Base ‘ 𝐾 )
glbc.g 𝐺 = ( glb ‘ 𝐾 )
glbc.k ( 𝜑𝐾𝑉 )
glbc.s ( 𝜑𝑆 ∈ dom 𝐺 )
Assertion glbcl ( 𝜑 → ( 𝐺𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 glbc.b 𝐵 = ( Base ‘ 𝐾 )
2 glbc.g 𝐺 = ( glb ‘ 𝐾 )
3 glbc.k ( 𝜑𝐾𝑉 )
4 glbc.s ( 𝜑𝑆 ∈ dom 𝐺 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 biid ( ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )
7 1 5 2 3 4 glbelss ( 𝜑𝑆𝐵 )
8 1 5 2 6 3 7 glbval ( 𝜑 → ( 𝐺𝑆 ) = ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )
9 1 5 2 6 3 4 glbeu ( 𝜑 → ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) )
10 riotacl ( ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) → ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 )
11 9 10 syl ( 𝜑 → ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 )
12 8 11 eqeltrd ( 𝜑 → ( 𝐺𝑆 ) ∈ 𝐵 )