| Step |
Hyp |
Ref |
Expression |
| 1 |
|
glbc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
glbc.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 3 |
|
glbc.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 4 |
|
glbc.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 7 |
1 5 2 3 4
|
glbelss |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 8 |
1 5 2 6 3 7
|
glbval |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) |
| 9 |
1 5 2 6 3 4
|
glbeu |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 10 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ∈ 𝐵 ) |
| 12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |