Metamath Proof Explorer


Theorem glbdm

Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses glbfval.b 𝐵 = ( Base ‘ 𝐾 )
glbfval.l = ( le ‘ 𝐾 )
glbfval.g 𝐺 = ( glb ‘ 𝐾 )
glbfval.p ( 𝜓 ↔ ( ∀ 𝑦𝑠 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑠 𝑧 𝑦𝑧 𝑥 ) ) )
glbfval.k ( 𝜑𝐾𝑉 )
Assertion glbdm ( 𝜑 → dom 𝐺 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } )

Proof

Step Hyp Ref Expression
1 glbfval.b 𝐵 = ( Base ‘ 𝐾 )
2 glbfval.l = ( le ‘ 𝐾 )
3 glbfval.g 𝐺 = ( glb ‘ 𝐾 )
4 glbfval.p ( 𝜓 ↔ ( ∀ 𝑦𝑠 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑠 𝑧 𝑦𝑧 𝑥 ) ) )
5 glbfval.k ( 𝜑𝐾𝑉 )
6 1 2 3 4 5 glbfval ( 𝜑𝐺 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) )
7 6 dmeqd ( 𝜑 → dom 𝐺 = dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) )
8 riotaex ( 𝑥𝐵 𝜓 ) ∈ V
9 eqid ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) )
10 8 9 dmmpti dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) = 𝒫 𝐵
11 10 ineq2i ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ) = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ 𝒫 𝐵 )
12 dmres dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) )
13 dfrab2 { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ 𝒫 𝐵 )
14 11 12 13 3eqtr4i dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 }
15 7 14 eqtrdi ( 𝜑 → dom 𝐺 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } )