Step |
Hyp |
Ref |
Expression |
1 |
|
glbfval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
glbfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
glbfval.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
glbfval.p |
⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
5 |
|
glbfval.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
6 |
1 2 3 4 5
|
glbfval |
⊢ ( 𝜑 → 𝐺 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
7 |
6
|
dmeqd |
⊢ ( 𝜑 → dom 𝐺 = dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
8 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ∈ V |
9 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
10 |
8 9
|
dmmpti |
⊢ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) = 𝒫 𝐵 |
11 |
10
|
ineq2i |
⊢ ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ) = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ 𝒫 𝐵 ) |
12 |
|
dmres |
⊢ dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ) |
13 |
|
dfrab2 |
⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ 𝒫 𝐵 ) |
14 |
11 12 13
|
3eqtr4i |
⊢ dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } |
15 |
7 14
|
eqtrdi |
⊢ ( 𝜑 → dom 𝐺 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) |