| Step | Hyp | Ref | Expression | 
						
							| 1 |  | glbeldm.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | glbeldm.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | glbeldm.g | ⊢ 𝐺  =  ( glb ‘ 𝐾 ) | 
						
							| 4 |  | glbeldm.p | ⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 5 |  | glbeldm.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 6 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 7 | 1 2 3 6 5 | glbdm | ⊢ ( 𝜑  →  dom  𝐺  =  { 𝑠  ∈  𝒫  𝐵  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) } ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝐺  ↔  𝑆  ∈  { 𝑠  ∈  𝒫  𝐵  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) } ) ) | 
						
							| 9 |  | raleq | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦 ) ) | 
						
							| 10 |  | raleq | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦 ) ) | 
						
							| 11 | 10 | imbi1d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 )  ↔  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) ) | 
						
							| 14 | 13 | reubidv | ⊢ ( 𝑠  =  𝑆  →  ( ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) ) | 
						
							| 15 | 4 | reubii | ⊢ ( ∃! 𝑥  ∈  𝐵 𝜓  ↔  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 16 | 14 15 | bitr4di | ⊢ ( 𝑠  =  𝑆  →  ( ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑆  ∈  { 𝑠  ∈  𝒫  𝐵  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) }  ↔  ( 𝑆  ∈  𝒫  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 18 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 19 | 18 | elpw2 | ⊢ ( 𝑆  ∈  𝒫  𝐵  ↔  𝑆  ⊆  𝐵 ) | 
						
							| 20 | 19 | anbi1i | ⊢ ( ( 𝑆  ∈  𝒫  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 )  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 21 | 17 20 | bitri | ⊢ ( 𝑆  ∈  { 𝑠  ∈  𝒫  𝐵  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) }  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 22 | 8 21 | bitrdi | ⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝐺  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) ) |