Metamath Proof Explorer


Theorem glbeldm2

Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses lubeldm2.b 𝐵 = ( Base ‘ 𝐾 )
lubeldm2.l = ( le ‘ 𝐾 )
glbeldm2.g 𝐺 = ( glb ‘ 𝐾 )
glbeldm2.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
glbeldm2.k ( 𝜑𝐾 ∈ Poset )
Assertion glbeldm2 ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 lubeldm2.b 𝐵 = ( Base ‘ 𝐾 )
2 lubeldm2.l = ( le ‘ 𝐾 )
3 glbeldm2.g 𝐺 = ( glb ‘ 𝐾 )
4 glbeldm2.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
5 glbeldm2.k ( 𝜑𝐾 ∈ Poset )
6 1 2 3 4 5 glbeldm ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) ) )
7 6 biimpa ( ( 𝜑𝑆 ∈ dom 𝐺 ) → ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) )
8 reurex ( ∃! 𝑥𝐵 𝜓 → ∃ 𝑥𝐵 𝜓 )
9 8 anim2i ( ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) → ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) )
10 7 9 syl ( ( 𝜑𝑆 ∈ dom 𝐺 ) → ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) )
11 simpl ( ( 𝜑 ∧ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) → 𝜑 )
12 simprl ( ( 𝜑 ∧ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) → 𝑆𝐵 )
13 2 1 posglbmo ( ( 𝐾 ∈ Poset ∧ 𝑆𝐵 ) → ∃* 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
14 5 13 sylan ( ( 𝜑𝑆𝐵 ) → ∃* 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
15 4 rmobii ( ∃* 𝑥𝐵 𝜓 ↔ ∃* 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
16 14 15 sylibr ( ( 𝜑𝑆𝐵 ) → ∃* 𝑥𝐵 𝜓 )
17 16 anim1ci ( ( ( 𝜑𝑆𝐵 ) ∧ ∃ 𝑥𝐵 𝜓 ) → ( ∃ 𝑥𝐵 𝜓 ∧ ∃* 𝑥𝐵 𝜓 ) )
18 reu5 ( ∃! 𝑥𝐵 𝜓 ↔ ( ∃ 𝑥𝐵 𝜓 ∧ ∃* 𝑥𝐵 𝜓 ) )
19 17 18 sylibr ( ( ( 𝜑𝑆𝐵 ) ∧ ∃ 𝑥𝐵 𝜓 ) → ∃! 𝑥𝐵 𝜓 )
20 19 anasss ( ( 𝜑 ∧ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) → ∃! 𝑥𝐵 𝜓 )
21 6 biimpar ( ( 𝜑 ∧ ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 )
22 11 12 20 21 syl12anc ( ( 𝜑 ∧ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 )
23 10 22 impbida ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆𝐵 ∧ ∃ 𝑥𝐵 𝜓 ) ) )