Step |
Hyp |
Ref |
Expression |
1 |
|
lubeldm2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lubeldm2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
glbeldm2.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
glbeldm2.p |
⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
5 |
|
glbeldm2.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
6 |
1 2 3 4 5
|
glbeldm |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
8 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
10 |
7 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
11 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝜑 ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ⊆ 𝐵 ) |
13 |
2 1
|
posglbmo |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
14 |
5 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
15 |
4
|
rmobii |
⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 𝜓 ) |
17 |
16
|
anim1ci |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) → ( ∃ 𝑥 ∈ 𝐵 𝜓 ∧ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |
18 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ( ∃ 𝑥 ∈ 𝐵 𝜓 ∧ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
20 |
19
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
21 |
6
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 ) |
22 |
11 12 20 21
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 ) |
23 |
10 22
|
impbida |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |