| Step | Hyp | Ref | Expression | 
						
							| 1 |  | glbs.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | glbs.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | glbs.g | ⊢ 𝐺  =  ( glb ‘ 𝐾 ) | 
						
							| 4 |  | glbs.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | glbs.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝐺 ) | 
						
							| 6 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) | 
						
							| 7 | 1 2 3 6 4 | glbeldm | ⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝐺  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) ) ) | 
						
							| 8 | 5 7 | mpbid | ⊢ ( 𝜑  →  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) |