Metamath Proof Explorer


Theorem glbeu

Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbval.b 𝐵 = ( Base ‘ 𝐾 )
glbval.l = ( le ‘ 𝐾 )
glbval.g 𝐺 = ( glb ‘ 𝐾 )
glbval.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
glbva.k ( 𝜑𝐾𝑉 )
glbval.s ( 𝜑𝑆 ∈ dom 𝐺 )
Assertion glbeu ( 𝜑 → ∃! 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 glbval.b 𝐵 = ( Base ‘ 𝐾 )
2 glbval.l = ( le ‘ 𝐾 )
3 glbval.g 𝐺 = ( glb ‘ 𝐾 )
4 glbval.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
5 glbva.k ( 𝜑𝐾𝑉 )
6 glbval.s ( 𝜑𝑆 ∈ dom 𝐺 )
7 1 2 3 4 5 glbeldm ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) ) )
8 6 7 mpbid ( 𝜑 → ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) )
9 8 simprd ( 𝜑 → ∃! 𝑥𝐵 𝜓 )