Metamath Proof Explorer
		
		
		
		Description:  Unique existence proper of a member of the domain of the greatest
         lower bound function of a poset.  (Contributed by NM, 7-Sep-2018)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						glbval.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						glbval.l | 
						⊢  ≤   =  ( le ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						glbval.g | 
						⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						glbval.p | 
						⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) )  | 
					
					
						 | 
						 | 
						glbva.k | 
						⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
					
					
						 | 
						 | 
						glbval.s | 
						⊢ ( 𝜑  →  𝑆  ∈  dom  𝐺 )  | 
					
				
					 | 
					Assertion | 
					glbeu | 
					⊢  ( 𝜑  →  ∃! 𝑥  ∈  𝐵 𝜓 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							glbval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							glbval.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							glbval.g | 
							⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							glbval.p | 
							⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							glbva.k | 
							⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							glbval.s | 
							⊢ ( 𝜑  →  𝑆  ∈  dom  𝐺 )  | 
						
						
							| 7 | 
							
								1 2 3 4 5
							 | 
							glbeldm | 
							⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝐺  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐵 𝜓 )  |