Step |
Hyp |
Ref |
Expression |
1 |
|
glbfun.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
2 |
|
funmpt |
⊢ Fun ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) |
3 |
|
funres |
⊢ ( Fun ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) → Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) |
4 |
2 3
|
ax-mp |
⊢ Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
8 |
|
id |
⊢ ( 𝐾 ∈ V → 𝐾 ∈ V ) |
9 |
5 6 1 7 8
|
glbfval |
⊢ ( 𝐾 ∈ V → 𝐺 = ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) |
10 |
9
|
funeqd |
⊢ ( 𝐾 ∈ V → ( Fun 𝐺 ↔ Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) ) |
11 |
4 10
|
mpbiri |
⊢ ( 𝐾 ∈ V → Fun 𝐺 ) |
12 |
|
fun0 |
⊢ Fun ∅ |
13 |
|
fvprc |
⊢ ( ¬ 𝐾 ∈ V → ( glb ‘ 𝐾 ) = ∅ ) |
14 |
1 13
|
eqtrid |
⊢ ( ¬ 𝐾 ∈ V → 𝐺 = ∅ ) |
15 |
14
|
funeqd |
⊢ ( ¬ 𝐾 ∈ V → ( Fun 𝐺 ↔ Fun ∅ ) ) |
16 |
12 15
|
mpbiri |
⊢ ( ¬ 𝐾 ∈ V → Fun 𝐺 ) |
17 |
11 16
|
pm2.61i |
⊢ Fun 𝐺 |