| Step | Hyp | Ref | Expression | 
						
							| 1 |  | glbfun.g | ⊢ 𝐺  =  ( glb ‘ 𝐾 ) | 
						
							| 2 |  | funmpt | ⊢ Fun  ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) | 
						
							| 3 |  | funres | ⊢ ( Fun  ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  →  Fun  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ Fun  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 6 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 7 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) | 
						
							| 8 |  | id | ⊢ ( 𝐾  ∈  V  →  𝐾  ∈  V ) | 
						
							| 9 | 5 6 1 7 8 | glbfval | ⊢ ( 𝐾  ∈  V  →  𝐺  =  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) | 
						
							| 10 | 9 | funeqd | ⊢ ( 𝐾  ∈  V  →  ( Fun  𝐺  ↔  Fun  ( ( 𝑠  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ( ℩ 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦  ∧  ∀ 𝑧  ∈  ( Base ‘ 𝐾 ) ( ∀ 𝑦  ∈  𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦  →  𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) ) | 
						
							| 11 | 4 10 | mpbiri | ⊢ ( 𝐾  ∈  V  →  Fun  𝐺 ) | 
						
							| 12 |  | fun0 | ⊢ Fun  ∅ | 
						
							| 13 |  | fvprc | ⊢ ( ¬  𝐾  ∈  V  →  ( glb ‘ 𝐾 )  =  ∅ ) | 
						
							| 14 | 1 13 | eqtrid | ⊢ ( ¬  𝐾  ∈  V  →  𝐺  =  ∅ ) | 
						
							| 15 | 14 | funeqd | ⊢ ( ¬  𝐾  ∈  V  →  ( Fun  𝐺  ↔  Fun  ∅ ) ) | 
						
							| 16 | 12 15 | mpbiri | ⊢ ( ¬  𝐾  ∈  V  →  Fun  𝐺 ) | 
						
							| 17 | 11 16 | pm2.61i | ⊢ Fun  𝐺 |