Metamath Proof Explorer


Theorem glble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b 𝐵 = ( Base ‘ 𝐾 )
glbprop.l = ( le ‘ 𝐾 )
glbprop.u 𝑈 = ( glb ‘ 𝐾 )
glbprop.k ( 𝜑𝐾𝑉 )
glbprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
glble.x ( 𝜑𝑋𝑆 )
Assertion glble ( 𝜑 → ( 𝑈𝑆 ) 𝑋 )

Proof

Step Hyp Ref Expression
1 glbprop.b 𝐵 = ( Base ‘ 𝐾 )
2 glbprop.l = ( le ‘ 𝐾 )
3 glbprop.u 𝑈 = ( glb ‘ 𝐾 )
4 glbprop.k ( 𝜑𝐾𝑉 )
5 glbprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
6 glble.x ( 𝜑𝑋𝑆 )
7 breq2 ( 𝑦 = 𝑋 → ( ( 𝑈𝑆 ) 𝑦 ↔ ( 𝑈𝑆 ) 𝑋 ) )
8 1 2 3 4 5 glbprop ( 𝜑 → ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) )
9 8 simpld ( 𝜑 → ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 )
10 7 9 6 rspcdva ( 𝜑 → ( 𝑈𝑆 ) 𝑋 )