Metamath Proof Explorer
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
|
|
Ref |
Expression |
|
Hypotheses |
glbprop.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
glbprop.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
glbprop.u |
⊢ 𝑈 = ( glb ‘ 𝐾 ) |
|
|
glbprop.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
|
|
glbprop.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
|
|
glble.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
|
Assertion |
glble |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
glbprop.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
glbprop.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
glbprop.u |
⊢ 𝑈 = ( glb ‘ 𝐾 ) |
4 |
|
glbprop.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
glbprop.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
6 |
|
glble.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ↔ ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |
8 |
1 2 3 4 5
|
glbprop |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝑈 ‘ 𝑆 ) ) ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( 𝑈 ‘ 𝑆 ) ≤ 𝑦 ) |
10 |
7 9 6
|
rspcdva |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) |