Metamath Proof Explorer


Theorem glbpr

Description: The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses lubpr.k ( 𝜑𝐾 ∈ Poset )
lubpr.b 𝐵 = ( Base ‘ 𝐾 )
lubpr.x ( 𝜑𝑋𝐵 )
lubpr.y ( 𝜑𝑌𝐵 )
lubpr.l = ( le ‘ 𝐾 )
lubpr.c ( 𝜑𝑋 𝑌 )
lubpr.s ( 𝜑𝑆 = { 𝑋 , 𝑌 } )
glbpr.g 𝐺 = ( glb ‘ 𝐾 )
Assertion glbpr ( 𝜑 → ( 𝐺𝑆 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lubpr.k ( 𝜑𝐾 ∈ Poset )
2 lubpr.b 𝐵 = ( Base ‘ 𝐾 )
3 lubpr.x ( 𝜑𝑋𝐵 )
4 lubpr.y ( 𝜑𝑌𝐵 )
5 lubpr.l = ( le ‘ 𝐾 )
6 lubpr.c ( 𝜑𝑋 𝑌 )
7 lubpr.s ( 𝜑𝑆 = { 𝑋 , 𝑌 } )
8 glbpr.g 𝐺 = ( glb ‘ 𝐾 )
9 1 2 3 4 5 6 7 8 glbprlem ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺𝑆 ) = 𝑋 ) )
10 9 simprd ( 𝜑 → ( 𝐺𝑆 ) = 𝑋 )