Step |
Hyp |
Ref |
Expression |
1 |
|
lubpr.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
2 |
|
lubpr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
lubpr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
lubpr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
lubpr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
|
lubpr.c |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
7 |
|
lubpr.s |
⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) |
8 |
|
glbpr.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) |
10 |
9
|
odupos |
⊢ ( 𝐾 ∈ Poset → ( ODual ‘ 𝐾 ) ∈ Poset ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Poset ) |
12 |
9 2
|
odubas |
⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
13 |
9 5
|
oduleval |
⊢ ◡ ≤ = ( le ‘ ( ODual ‘ 𝐾 ) ) |
14 |
|
brcnvg |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) |
15 |
4 3 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) |
16 |
6 15
|
mpbird |
⊢ ( 𝜑 → 𝑌 ◡ ≤ 𝑋 ) |
17 |
|
prcom |
⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } |
18 |
7 17
|
eqtrdi |
⊢ ( 𝜑 → 𝑆 = { 𝑌 , 𝑋 } ) |
19 |
|
eqid |
⊢ ( lub ‘ ( ODual ‘ 𝐾 ) ) = ( lub ‘ ( ODual ‘ 𝐾 ) ) |
20 |
11 12 4 3 13 16 18 19
|
lubprdm |
⊢ ( 𝜑 → 𝑆 ∈ dom ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
21 |
9 8
|
odulub |
⊢ ( 𝐾 ∈ Poset → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
22 |
1 21
|
syl |
⊢ ( 𝜑 → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom 𝐺 = dom ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
24 |
20 23
|
eleqtrrd |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝐺 ) |
25 |
22
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) ) |
26 |
11 12 4 3 13 16 18 19
|
lubpr |
⊢ ( 𝜑 → ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) = 𝑋 ) |
27 |
25 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑋 ) |
28 |
24 27
|
jca |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑆 ) = 𝑋 ) ) |