Metamath Proof Explorer


Theorem goaleq12d

Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023)

Ref Expression
Hypotheses goaleq12d.1 ( 𝜑𝑀 = 𝑁 )
goaleq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion goaleq12d ( 𝜑 → ∀𝑔 𝑀 𝐴 = ∀𝑔 𝑁 𝐵 )

Proof

Step Hyp Ref Expression
1 goaleq12d.1 ( 𝜑𝑀 = 𝑁 )
2 goaleq12d.2 ( 𝜑𝐴 = 𝐵 )
3 df-goal 𝑔 𝑀 𝐴 = ⟨ 2o , ⟨ 𝑀 , 𝐴 ⟩ ⟩
4 3 a1i ( 𝜑 → ∀𝑔 𝑀 𝐴 = ⟨ 2o , ⟨ 𝑀 , 𝐴 ⟩ ⟩ )
5 1 2 opeq12d ( 𝜑 → ⟨ 𝑀 , 𝐴 ⟩ = ⟨ 𝑁 , 𝐵 ⟩ )
6 5 opeq2d ( 𝜑 → ⟨ 2o , ⟨ 𝑀 , 𝐴 ⟩ ⟩ = ⟨ 2o , ⟨ 𝑁 , 𝐵 ⟩ ⟩ )
7 df-goal 𝑔 𝑁 𝐵 = ⟨ 2o , ⟨ 𝑁 , 𝐵 ⟩ ⟩
8 7 eqcomi ⟨ 2o , ⟨ 𝑁 , 𝐵 ⟩ ⟩ = ∀𝑔 𝑁 𝐵
9 8 a1i ( 𝜑 → ⟨ 2o , ⟨ 𝑁 , 𝐵 ⟩ ⟩ = ∀𝑔 𝑁 𝐵 )
10 6 9 eqtrd ( 𝜑 → ⟨ 2o , ⟨ 𝑀 , 𝐴 ⟩ ⟩ = ∀𝑔 𝑁 𝐵 )
11 4 10 eqtrd ( 𝜑 → ∀𝑔 𝑀 𝐴 = ∀𝑔 𝑁 𝐵 )