Metamath Proof Explorer


Theorem goelel3xp

Description: A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023)

Ref Expression
Assertion goelel3xp ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼𝑔 𝐽 ) ∈ ( ω × ( ω × ω ) ) )

Proof

Step Hyp Ref Expression
1 goel ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼𝑔 𝐽 ) = ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ )
2 peano1 ∅ ∈ ω
3 2 a1i ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ∅ ∈ ω )
4 opelxpi ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ⟨ 𝐼 , 𝐽 ⟩ ∈ ( ω × ω ) )
5 3 4 opelxpd ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ ∈ ( ω × ( ω × ω ) ) )
6 1 5 eqeltrd ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼𝑔 𝐽 ) ∈ ( ω × ( ω × ω ) ) )