Step |
Hyp |
Ref |
Expression |
1 |
|
1one2o |
⊢ 1o ≠ 2o |
2 |
1
|
neii |
⊢ ¬ 1o = 2o |
3 |
2
|
intnanr |
⊢ ¬ ( 1o = 2o ∧ ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑖 , 𝑢 ⟩ ) |
4 |
|
gonafv |
⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ⊼𝑔 𝑏 ) = ⟨ 1o , ⟨ 𝑎 , 𝑏 ⟩ ⟩ ) |
5 |
4
|
el2v |
⊢ ( 𝑎 ⊼𝑔 𝑏 ) = ⟨ 1o , ⟨ 𝑎 , 𝑏 ⟩ ⟩ |
6 |
|
df-goal |
⊢ ∀𝑔 𝑖 𝑢 = ⟨ 2o , ⟨ 𝑖 , 𝑢 ⟩ ⟩ |
7 |
5 6
|
eqeq12i |
⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ↔ ⟨ 1o , ⟨ 𝑎 , 𝑏 ⟩ ⟩ = ⟨ 2o , ⟨ 𝑖 , 𝑢 ⟩ ⟩ ) |
8 |
|
1oex |
⊢ 1o ∈ V |
9 |
|
opex |
⊢ ⟨ 𝑎 , 𝑏 ⟩ ∈ V |
10 |
8 9
|
opth |
⊢ ( ⟨ 1o , ⟨ 𝑎 , 𝑏 ⟩ ⟩ = ⟨ 2o , ⟨ 𝑖 , 𝑢 ⟩ ⟩ ↔ ( 1o = 2o ∧ ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑖 , 𝑢 ⟩ ) ) |
11 |
7 10
|
bitri |
⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ↔ ( 1o = 2o ∧ ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑖 , 𝑢 ⟩ ) ) |
12 |
11
|
necon3abii |
⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 ↔ ¬ ( 1o = 2o ∧ ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑖 , 𝑢 ⟩ ) ) |
13 |
3 12
|
mpbir |
⊢ ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 |