| Step | Hyp | Ref | Expression | 
						
							| 1 |  | graop.h | ⊢ 𝐻  =  〈 ( Vtx ‘ 𝐺 ) ,  ( iEdg ‘ 𝐺 ) 〉 | 
						
							| 2 | 1 | fveq2i | ⊢ ( Vtx ‘ 𝐻 )  =  ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) ,  ( iEdg ‘ 𝐺 ) 〉 ) | 
						
							| 3 |  | fvex | ⊢ ( Vtx ‘ 𝐺 )  ∈  V | 
						
							| 4 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 5 | 3 4 | opvtxfvi | ⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) ,  ( iEdg ‘ 𝐺 ) 〉 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 | 2 5 | eqtr2i | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐻 ) | 
						
							| 7 | 1 | fveq2i | ⊢ ( iEdg ‘ 𝐻 )  =  ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) ,  ( iEdg ‘ 𝐺 ) 〉 ) | 
						
							| 8 | 3 4 | opiedgfvi | ⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) ,  ( iEdg ‘ 𝐺 ) 〉 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 9 | 7 8 | eqtr2i | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐻 ) | 
						
							| 10 | 6 9 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐻 )  ∧  ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐻 ) ) |