Step |
Hyp |
Ref |
Expression |
1 |
|
graop.h |
⊢ 𝐻 = 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 |
2 |
1
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
3 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
4 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
5 |
3 4
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
6 |
2 5
|
eqtr2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) |
7 |
1
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
8 |
3 4
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
9 |
7 8
|
eqtr2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) |
10 |
6 9
|
pm3.2i |
⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |