Metamath Proof Explorer


Theorem graop

Description: Any representation of a graph G (especially as extensible structure G = { <. ( Basendx ) , V >. , <. ( .efndx ) , E >. } ) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020)

Ref Expression
Hypothesis graop.h 𝐻 = ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩
Assertion graop ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) )

Proof

Step Hyp Ref Expression
1 graop.h 𝐻 = ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩
2 1 fveq2i ( Vtx ‘ 𝐻 ) = ( Vtx ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ )
3 fvex ( Vtx ‘ 𝐺 ) ∈ V
4 fvex ( iEdg ‘ 𝐺 ) ∈ V
5 3 4 opvtxfvi ( Vtx ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( Vtx ‘ 𝐺 )
6 2 5 eqtr2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 )
7 1 fveq2i ( iEdg ‘ 𝐻 ) = ( iEdg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ )
8 3 4 opiedgfvi ( iEdg ‘ ⟨ ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) ⟩ ) = ( iEdg ‘ 𝐺 )
9 7 8 eqtr2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 )
10 6 9 pm3.2i ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) )