Step |
Hyp |
Ref |
Expression |
1 |
|
grastruct.h |
⊢ 𝐻 = { 〈 ( Base ‘ ndx ) , ( Vtx ‘ 𝐺 ) 〉 , 〈 ( .ef ‘ ndx ) , ( iEdg ‘ 𝐺 ) 〉 } |
2 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
3 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
4 |
1
|
struct2grvtx |
⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) |
6 |
5
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) |
7 |
1
|
struct2griedg |
⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
8 |
2 3 7
|
mp2an |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) |
9 |
8
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) |
10 |
6 9
|
pm3.2i |
⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |