Metamath Proof Explorer


Theorem griedg0prc

Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u 𝑈 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ }
Assertion griedg0prc 𝑈 ∉ V

Proof

Step Hyp Ref Expression
1 griedg0prc.u 𝑈 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ }
2 0ex ∅ ∈ V
3 feq1 ( 𝑒 = ∅ → ( 𝑒 : ∅ ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) )
4 f0 ∅ : ∅ ⟶ ∅
5 2 3 4 ceqsexv2d 𝑒 𝑒 : ∅ ⟶ ∅
6 opabn1stprc ( ∃ 𝑒 𝑒 : ∅ ⟶ ∅ → { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V )
7 5 6 ax-mp { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V
8 neleq1 ( 𝑈 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } → ( 𝑈 ∉ V ↔ { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V ) )
9 1 8 ax-mp ( 𝑈 ∉ V ↔ { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V )
10 7 9 mpbir 𝑈 ∉ V