Metamath Proof Explorer


Theorem grothomex

Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex ). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion grothomex ω ∈ V

Proof

Step Hyp Ref Expression
1 r111 𝑅1 : On –1-1→ V
2 omsson ω ⊆ On
3 f1ores ( ( 𝑅1 : On –1-1→ V ∧ ω ⊆ On ) → ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) )
4 1 2 3 mp2an ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω )
5 f1of1 ( ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) → ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) )
6 4 5 ax-mp ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω )
7 r1fnon 𝑅1 Fn On
8 fvelimab ( ( 𝑅1 Fn On ∧ ω ⊆ On ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1𝑥 ) = 𝑤 ) )
9 7 2 8 mp2an ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1𝑥 ) = 𝑤 )
10 fveq2 ( 𝑥 = ∅ → ( 𝑅1𝑥 ) = ( 𝑅1 ‘ ∅ ) )
11 10 eleq1d ( 𝑥 = ∅ → ( ( 𝑅1𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) )
12 fveq2 ( 𝑥 = 𝑤 → ( 𝑅1𝑥 ) = ( 𝑅1𝑤 ) )
13 12 eleq1d ( 𝑥 = 𝑤 → ( ( 𝑅1𝑥 ) ∈ 𝑦 ↔ ( 𝑅1𝑤 ) ∈ 𝑦 ) )
14 fveq2 ( 𝑥 = suc 𝑤 → ( 𝑅1𝑥 ) = ( 𝑅1 ‘ suc 𝑤 ) )
15 14 eleq1d ( 𝑥 = suc 𝑤 → ( ( 𝑅1𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) )
16 r10 ( 𝑅1 ‘ ∅ ) = ∅
17 16 eleq1i ( ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ↔ ∅ ∈ 𝑦 )
18 17 biimpri ( ∅ ∈ 𝑦 → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 )
19 18 adantr ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 )
20 pweq ( 𝑧 = ( 𝑅1𝑤 ) → 𝒫 𝑧 = 𝒫 ( 𝑅1𝑤 ) )
21 20 eleq1d ( 𝑧 = ( 𝑅1𝑤 ) → ( 𝒫 𝑧𝑦 ↔ 𝒫 ( 𝑅1𝑤 ) ∈ 𝑦 ) )
22 21 rspccv ( ∀ 𝑧𝑦 𝒫 𝑧𝑦 → ( ( 𝑅1𝑤 ) ∈ 𝑦 → 𝒫 ( 𝑅1𝑤 ) ∈ 𝑦 ) )
23 nnon ( 𝑤 ∈ ω → 𝑤 ∈ On )
24 r1suc ( 𝑤 ∈ On → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1𝑤 ) )
25 23 24 syl ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1𝑤 ) )
26 25 eleq1d ( 𝑤 ∈ ω → ( ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ↔ 𝒫 ( 𝑅1𝑤 ) ∈ 𝑦 ) )
27 26 biimprcd ( 𝒫 ( 𝑅1𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) )
28 22 27 syl6 ( ∀ 𝑧𝑦 𝒫 𝑧𝑦 → ( ( 𝑅1𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) )
29 28 com3r ( 𝑤 ∈ ω → ( ∀ 𝑧𝑦 𝒫 𝑧𝑦 → ( ( 𝑅1𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) )
30 29 adantld ( 𝑤 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( ( 𝑅1𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) )
31 11 13 15 19 30 finds2 ( 𝑥 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( 𝑅1𝑥 ) ∈ 𝑦 ) )
32 eleq1 ( ( 𝑅1𝑥 ) = 𝑤 → ( ( 𝑅1𝑥 ) ∈ 𝑦𝑤𝑦 ) )
33 32 biimpd ( ( 𝑅1𝑥 ) = 𝑤 → ( ( 𝑅1𝑥 ) ∈ 𝑦𝑤𝑦 ) )
34 31 33 syl9 ( 𝑥 ∈ ω → ( ( 𝑅1𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → 𝑤𝑦 ) ) )
35 34 rexlimiv ( ∃ 𝑥 ∈ ω ( 𝑅1𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → 𝑤𝑦 ) )
36 9 35 sylbi ( 𝑤 ∈ ( 𝑅1 “ ω ) → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → 𝑤𝑦 ) )
37 36 com12 ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) → 𝑤𝑦 ) )
38 37 ssrdv ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( 𝑅1 “ ω ) ⊆ 𝑦 )
39 vex 𝑦 ∈ V
40 39 ssex ( ( 𝑅1 “ ω ) ⊆ 𝑦 → ( 𝑅1 “ ω ) ∈ V )
41 38 40 syl ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) → ( 𝑅1 “ ω ) ∈ V )
42 0ex ∅ ∈ V
43 eleq1 ( 𝑥 = ∅ → ( 𝑥𝑦 ↔ ∅ ∈ 𝑦 ) )
44 43 anbi1d ( 𝑥 = ∅ → ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) ↔ ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) ) )
45 44 exbidv ( 𝑥 = ∅ → ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) ↔ ∃ 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) ) )
46 axgroth6 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) )
47 simpr ( ( 𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦 ) → 𝒫 𝑧𝑦 )
48 47 ralimi ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦 ) → ∀ 𝑧𝑦 𝒫 𝑧𝑦 )
49 48 anim2i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦 ) ) → ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) )
50 49 3adant3 ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) → ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 ) )
51 46 50 eximii 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 )
52 42 45 51 vtocl 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧𝑦 𝒫 𝑧𝑦 )
53 41 52 exlimiiv ( 𝑅1 “ ω ) ∈ V
54 f1dmex ( ( ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) ∧ ( 𝑅1 “ ω ) ∈ V ) → ω ∈ V )
55 6 53 54 mp2an ω ∈ V