Step |
Hyp |
Ref |
Expression |
1 |
|
r111 |
⊢ 𝑅1 : On –1-1→ V |
2 |
|
omsson |
⊢ ω ⊆ On |
3 |
|
f1ores |
⊢ ( ( 𝑅1 : On –1-1→ V ∧ ω ⊆ On ) → ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) |
5 |
|
f1of1 |
⊢ ( ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) → ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) |
7 |
|
r1fnon |
⊢ 𝑅1 Fn On |
8 |
|
fvelimab |
⊢ ( ( 𝑅1 Fn On ∧ ω ⊆ On ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 ) ) |
9 |
7 2 8
|
mp2an |
⊢ ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑤 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑤 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑤 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑥 = suc 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) |
16 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
17 |
16
|
eleq1i |
⊢ ( ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ↔ ∅ ∈ 𝑦 ) |
18 |
17
|
biimpri |
⊢ ( ∅ ∈ 𝑦 → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) |
19 |
18
|
adantr |
⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) |
20 |
|
pweq |
⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑤 ) → 𝒫 𝑧 = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑤 ) → ( 𝒫 𝑧 ∈ 𝑦 ↔ 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
22 |
21
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
23 |
|
nnon |
⊢ ( 𝑤 ∈ ω → 𝑤 ∈ On ) |
24 |
|
r1suc |
⊢ ( 𝑤 ∈ On → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ↔ 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
27 |
26
|
biimprcd |
⊢ ( 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) |
28 |
22 27
|
syl6 |
⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
29 |
28
|
com3r |
⊢ ( 𝑤 ∈ ω → ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
30 |
29
|
adantld |
⊢ ( 𝑤 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
31 |
11 13 15 19 30
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ) ) |
32 |
|
eleq1 |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) |
33 |
32
|
biimpd |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 → 𝑤 ∈ 𝑦 ) ) |
34 |
31 33
|
syl9 |
⊢ ( 𝑥 ∈ ω → ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) ) |
35 |
34
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) |
36 |
9 35
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝑅1 “ ω ) → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) |
37 |
36
|
com12 |
⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝑦 ) ) |
38 |
37
|
ssrdv |
⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 “ ω ) ⊆ 𝑦 ) |
39 |
|
vex |
⊢ 𝑦 ∈ V |
40 |
39
|
ssex |
⊢ ( ( 𝑅1 “ ω ) ⊆ 𝑦 → ( 𝑅1 “ ω ) ∈ V ) |
41 |
38 40
|
syl |
⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 “ ω ) ∈ V ) |
42 |
|
0ex |
⊢ ∅ ∈ V |
43 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦 ) ) |
44 |
43
|
anbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ↔ ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) ) |
45 |
44
|
exbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) ) |
46 |
|
axgroth6 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) |
47 |
|
simpr |
⊢ ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) → 𝒫 𝑧 ∈ 𝑦 ) |
48 |
47
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) → ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
49 |
48
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) |
50 |
49
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) |
51 |
46 50
|
eximii |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
52 |
42 45 51
|
vtocl |
⊢ ∃ 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
53 |
41 52
|
exlimiiv |
⊢ ( 𝑅1 “ ω ) ∈ V |
54 |
|
f1dmex |
⊢ ( ( ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) ∧ ( 𝑅1 “ ω ) ∈ V ) → ω ∈ V ) |
55 |
6 53 54
|
mp2an |
⊢ ω ∈ V |