| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axgroth4 | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 2 |  | 3anass | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 3 |  | df-ss | ⊢ ( 𝑤  ⊆  𝑧  ↔  ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 ) ) | 
						
							| 4 |  | elin | ⊢ ( 𝑤  ∈  ( 𝑦  ∩  𝑣 )  ↔  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) | 
						
							| 5 | 3 4 | imbi12i | ⊢ ( ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) | 
						
							| 6 | 5 | albii | ⊢ ( ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) | 
						
							| 7 | 6 | rexbii | ⊢ ( ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) | 
						
							| 8 |  | df-rex | ⊢ ( ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) )  ↔  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) ) | 
						
							| 10 | 9 | ralbii | ⊢ ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ∀ 𝑧  ∈  𝑦 ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) ) ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) ) ) | 
						
							| 13 |  | df-ss | ⊢ ( 𝑧  ⊆  𝑦  ↔  ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 ) ) | 
						
							| 14 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 15 | 14 | difexi | ⊢ ( 𝑦  ∖  𝑧 )  ∈  V | 
						
							| 16 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 17 |  | disjdifr | ⊢ ( ( 𝑦  ∖  𝑧 )  ∩  𝑧 )  =  ∅ | 
						
							| 18 | 15 16 17 | brdom6disj | ⊢ ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ↔  ∃ 𝑤 ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 ) ) | 
						
							| 19 | 18 | orbi1i | ⊢ ( ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 )  ↔  ( ∃ 𝑤 ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 20 |  | 19.44v | ⊢ ( ∃ 𝑤 ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 )  ↔  ( ∃ 𝑤 ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 21 | 19 20 | bitr4i | ⊢ ( ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 )  ↔  ∃ 𝑤 ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 22 | 13 21 | imbi12i | ⊢ ( ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) )  ↔  ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ∃ 𝑤 ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 23 |  | 19.35 | ⊢ ( ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) )  ↔  ( ∀ 𝑤 ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ∃ 𝑤 ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 24 | 22 23 | bitr4i | ⊢ ( ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 25 |  | grothprimlem | ⊢ ( { 𝑣 ,  𝑢 }  ∈  𝑤  ↔  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) ) ) | 
						
							| 26 | 25 | mobii | ⊢ ( ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ↔  ∃* 𝑢 ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) ) ) | 
						
							| 27 |  | df-mo | ⊢ ( ∃* 𝑢 ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  ↔  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) ) | 
						
							| 28 | 26 27 | bitri | ⊢ ( ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ↔  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) ) | 
						
							| 29 | 28 | ralbii | ⊢ ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ↔  ∀ 𝑣  ∈  𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) ) | 
						
							| 30 |  | df-ral | ⊢ ( ∀ 𝑣  ∈  𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 )  ↔  ∀ 𝑣 ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) ) ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ↔  ∀ 𝑣 ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) ) ) | 
						
							| 32 |  | df-ral | ⊢ ( ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤  ↔  ∀ 𝑣 ( 𝑣  ∈  ( 𝑦  ∖  𝑧 )  →  ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 ) ) | 
						
							| 33 |  | eldif | ⊢ ( 𝑣  ∈  ( 𝑦  ∖  𝑧 )  ↔  ( 𝑣  ∈  𝑦  ∧  ¬  𝑣  ∈  𝑧 ) ) | 
						
							| 34 |  | grothprimlem | ⊢ ( { 𝑢 ,  𝑣 }  ∈  𝑤  ↔  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) | 
						
							| 35 | 34 | rexbii | ⊢ ( ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤  ↔  ∃ 𝑢  ∈  𝑧 ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) | 
						
							| 36 |  | df-rex | ⊢ ( ∃ 𝑢  ∈  𝑧 ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) )  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) | 
						
							| 37 | 35 36 | bitri | ⊢ ( ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) | 
						
							| 38 | 33 37 | imbi12i | ⊢ ( ( 𝑣  ∈  ( 𝑦  ∖  𝑧 )  →  ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ↔  ( ( 𝑣  ∈  𝑦  ∧  ¬  𝑣  ∈  𝑧 )  →  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) | 
						
							| 39 |  | pm5.6 | ⊢ ( ( ( 𝑣  ∈  𝑦  ∧  ¬  𝑣  ∈  𝑧 )  →  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) )  ↔  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) | 
						
							| 40 | 38 39 | bitri | ⊢ ( ( 𝑣  ∈  ( 𝑦  ∖  𝑧 )  →  ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ↔  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) | 
						
							| 41 | 40 | albii | ⊢ ( ∀ 𝑣 ( 𝑣  ∈  ( 𝑦  ∖  𝑧 )  →  ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ↔  ∀ 𝑣 ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) | 
						
							| 42 | 32 41 | bitri | ⊢ ( ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤  ↔  ∀ 𝑣 ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) | 
						
							| 43 | 31 42 | anbi12i | ⊢ ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ↔  ( ∀ 𝑣 ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ∀ 𝑣 ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) ) | 
						
							| 44 |  | 19.26 | ⊢ ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ↔  ( ∀ 𝑣 ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ∀ 𝑣 ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) ) | 
						
							| 45 | 43 44 | bitr4i | ⊢ ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ↔  ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) ) ) | 
						
							| 46 | 45 | orbi1i | ⊢ ( ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 )  ↔  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 47 | 46 | imbi2i | ⊢ ( ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) )  ↔  ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 48 | 47 | exbii | ⊢ ( ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ( ∀ 𝑣  ∈  𝑧 ∃* 𝑢 { 𝑣 ,  𝑢 }  ∈  𝑤  ∧  ∀ 𝑣  ∈  ( 𝑦  ∖  𝑧 ) ∃ 𝑢  ∈  𝑧 { 𝑢 ,  𝑣 }  ∈  𝑤 )  ∨  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 49 | 24 48 | bitri | ⊢ ( ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 50 | 49 | albii | ⊢ ( ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) )  ↔  ∀ 𝑧 ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 51 | 12 50 | anbi12i | ⊢ ( ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∀ 𝑧 ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 52 |  | 19.26 | ⊢ ( ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∀ 𝑧 ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 53 | 51 52 | bitr4i | ⊢ ( ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 54 | 53 | anbi2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ( ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 55 | 2 54 | bitri | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 56 | 55 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ∃ 𝑣  ∈  𝑦 ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  ( 𝑦  ∩  𝑣 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( ( 𝑦  ∖  𝑧 )  ≼  𝑧  ∨  𝑧  ∈  𝑦 ) ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 57 | 1 56 | mpbi | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( ( 𝑧  ∈  𝑦  →  ∃ 𝑣 ( 𝑣  ∈  𝑦  ∧  ∀ 𝑤 ( ∀ 𝑢 ( 𝑢  ∈  𝑤  →  𝑢  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  𝑣 ) ) ) )  ∧  ∃ 𝑤 ( ( 𝑤  ∈  𝑧  →  𝑤  ∈  𝑦 )  →  ( ∀ 𝑣 ( ( 𝑣  ∈  𝑧  →  ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑣  ∨  ℎ  =  𝑢 ) ) )  →  𝑢  =  𝑡 ) )  ∧  ( 𝑣  ∈  𝑦  →  ( 𝑣  ∈  𝑧  ∨  ∃ 𝑢 ( 𝑢  ∈  𝑧  ∧  ∃ 𝑔 ( 𝑔  ∈  𝑤  ∧  ∀ ℎ ( ℎ  ∈  𝑔  ↔  ( ℎ  =  𝑢  ∨  ℎ  =  𝑣 ) ) ) ) ) ) )  ∨  𝑧  ∈  𝑦 ) ) ) ) |