Metamath Proof Explorer


Theorem grothprimlem

Description: Lemma for grothprim . Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007)

Ref Expression
Assertion grothprimlem ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔𝑤 ∧ ∀ ( 𝑔 ↔ ( = 𝑢 = 𝑣 ) ) ) )

Proof

Step Hyp Ref Expression
1 dfpr2 { 𝑢 , 𝑣 } = { ∣ ( = 𝑢 = 𝑣 ) }
2 1 eleq1i ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ { ∣ ( = 𝑢 = 𝑣 ) } ∈ 𝑤 )
3 clabel ( { ∣ ( = 𝑢 = 𝑣 ) } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔𝑤 ∧ ∀ ( 𝑔 ↔ ( = 𝑢 = 𝑣 ) ) ) )
4 2 3 bitri ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔𝑤 ∧ ∀ ( 𝑔 ↔ ( = 𝑢 = 𝑣 ) ) ) )