Description: Lemma for grothprim . Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothprimlem | ⊢ ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpr2 | ⊢ { 𝑢 , 𝑣 } = { ℎ ∣ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) } | |
| 2 | 1 | eleq1i | ⊢ ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ { ℎ ∣ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) } ∈ 𝑤 ) |
| 3 | clabel | ⊢ ( { ℎ ∣ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) |