Step |
Hyp |
Ref |
Expression |
1 |
|
axgroth5 |
⊢ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) |
2 |
|
eltskg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) |
3 |
2
|
elv |
⊢ ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
4 |
3
|
anbi2i |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) |
5 |
|
3anass |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) |
6 |
4 5
|
bitr4i |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
8 |
1 7
|
mpbir |
⊢ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) |
9 |
|
eluni |
⊢ ( 𝑤 ∈ ∪ Tarski ↔ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ) |
10 |
8 9
|
mpbir |
⊢ 𝑤 ∈ ∪ Tarski |
11 |
|
vex |
⊢ 𝑤 ∈ V |
12 |
10 11
|
2th |
⊢ ( 𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V ) |
13 |
12
|
eqriv |
⊢ ∪ Tarski = V |