Metamath Proof Explorer


Theorem grp1

Description: The (smallest) structure representing atrivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group ) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks ofthe trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis grp1.m 𝑀 = { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ }
Assertion grp1 ( 𝐼𝑉𝑀 ∈ Grp )

Proof

Step Hyp Ref Expression
1 grp1.m 𝑀 = { ⟨ ( Base ‘ ndx ) , { 𝐼 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ⟩ }
2 1 mnd1 ( 𝐼𝑉𝑀 ∈ Mnd )
3 df-ov ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ )
4 opex 𝐼 , 𝐼 ⟩ ∈ V
5 fvsng ( ( ⟨ 𝐼 , 𝐼 ⟩ ∈ V ∧ 𝐼𝑉 ) → ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ ) = 𝐼 )
6 4 5 mpan ( 𝐼𝑉 → ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ‘ ⟨ 𝐼 , 𝐼 ⟩ ) = 𝐼 )
7 3 6 eqtrid ( 𝐼𝑉 → ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = 𝐼 )
8 1 mnd1id ( 𝐼𝑉 → ( 0g𝑀 ) = 𝐼 )
9 7 8 eqtr4d ( 𝐼𝑉 → ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) )
10 oveq2 ( 𝑖 = 𝐼 → ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) )
11 10 eqeq1d ( 𝑖 = 𝐼 → ( ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) ↔ ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
12 11 rexbidv ( 𝑖 = 𝐼 → ( ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) ↔ ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
13 12 ralsng ( 𝐼𝑉 → ( ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) ↔ ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
14 oveq1 ( 𝑒 = 𝐼 → ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) )
15 14 eqeq1d ( 𝑒 = 𝐼 → ( ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ↔ ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
16 15 rexsng ( 𝐼𝑉 → ( ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ↔ ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
17 13 16 bitrd ( 𝐼𝑉 → ( ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) ↔ ( 𝐼 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝐼 ) = ( 0g𝑀 ) ) )
18 9 17 mpbird ( 𝐼𝑉 → ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) )
19 snex { 𝐼 } ∈ V
20 1 grpbase ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ 𝑀 ) )
21 19 20 ax-mp { 𝐼 } = ( Base ‘ 𝑀 )
22 snex { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V
23 1 grpplusg ( { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } ∈ V → { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g𝑀 ) )
24 22 23 ax-mp { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } = ( +g𝑀 )
25 eqid ( 0g𝑀 ) = ( 0g𝑀 )
26 21 24 25 isgrp ( 𝑀 ∈ Grp ↔ ( 𝑀 ∈ Mnd ∧ ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { ⟨ ⟨ 𝐼 , 𝐼 ⟩ , 𝐼 ⟩ } 𝑖 ) = ( 0g𝑀 ) ) )
27 2 18 26 sylanbrc ( 𝐼𝑉𝑀 ∈ Grp )