Step |
Hyp |
Ref |
Expression |
1 |
|
grp1.m |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝐼 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 〉 } |
2 |
1
|
mnd1 |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
3 |
|
df-ov |
⊢ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) |
4 |
|
opex |
⊢ 〈 𝐼 , 𝐼 〉 ∈ V |
5 |
|
fvsng |
⊢ ( ( 〈 𝐼 , 𝐼 〉 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
6 |
4 5
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ‘ 〈 𝐼 , 𝐼 〉 ) = 𝐼 ) |
7 |
3 6
|
eqtrid |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = 𝐼 ) |
8 |
1
|
mnd1id |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝑀 ) = 𝐼 ) |
9 |
7 8
|
eqtr4d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ↔ ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ↔ ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
13 |
12
|
ralsng |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ↔ ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑒 = 𝐼 → ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑒 = 𝐼 → ( ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ↔ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
16 |
15
|
rexsng |
⊢ ( 𝐼 ∈ 𝑉 → ( ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ↔ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
17 |
13 16
|
bitrd |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ↔ ( 𝐼 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝐼 ) = ( 0g ‘ 𝑀 ) ) ) |
18 |
9 17
|
mpbird |
⊢ ( 𝐼 ∈ 𝑉 → ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ) |
19 |
|
snex |
⊢ { 𝐼 } ∈ V |
20 |
1
|
grpbase |
⊢ ( { 𝐼 } ∈ V → { 𝐼 } = ( Base ‘ 𝑀 ) ) |
21 |
19 20
|
ax-mp |
⊢ { 𝐼 } = ( Base ‘ 𝑀 ) |
22 |
|
snex |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V |
23 |
1
|
grpplusg |
⊢ ( { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } ∈ V → { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) ) |
24 |
22 23
|
ax-mp |
⊢ { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } = ( +g ‘ 𝑀 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
26 |
21 24 25
|
isgrp |
⊢ ( 𝑀 ∈ Grp ↔ ( 𝑀 ∈ Mnd ∧ ∀ 𝑖 ∈ { 𝐼 } ∃ 𝑒 ∈ { 𝐼 } ( 𝑒 { 〈 〈 𝐼 , 𝐼 〉 , 𝐼 〉 } 𝑖 ) = ( 0g ‘ 𝑀 ) ) ) |
27 |
2 18 26
|
sylanbrc |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Grp ) |