| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 5 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 8 |
1 7
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 9 |
8
|
3ad2antr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 10 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 11 |
4 5 6 9 10
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 12 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 13 |
12
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 14 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 15 |
1 2 7 3
|
grpsubval |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 17 |
1 2 7 3
|
grpsubval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 18 |
6 14 17
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 20 |
11 16 19
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( 𝑋 + ( 𝑌 − 𝑍 ) ) ) |