Metamath Proof Explorer


Theorem grpass

Description: A group operation is associative. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b 𝐵 = ( Base ‘ 𝐺 )
grpcl.p + = ( +g𝐺 )
Assertion grpass ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 grpcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpcl.p + = ( +g𝐺 )
3 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
4 1 2 mndass ( ( 𝐺 ∈ Mnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )
5 3 4 sylan ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )