Step |
Hyp |
Ref |
Expression |
1 |
|
grplcan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grplcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpasscan1.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
1 2 4 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
8 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) |
10 |
9
|
3exp2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) ) |
12 |
8 11
|
mpd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) |
13 |
12
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) |
14 |
1 2 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
16 |
7 13 15
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) = 𝑌 ) |