| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplcan.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grplcan.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpasscan1.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  +  ( 𝑁 ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑋  +  ( ( 𝑁 ‘ 𝑌 )  +  𝑌 ) ) ) | 
						
							| 10 | 4 5 7 8 9 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  ( 𝑁 ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑋  +  ( ( 𝑁 ‘ 𝑌 )  +  𝑌 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 12 | 1 2 11 3 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑁 ‘ 𝑌 )  +  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 13 | 12 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑁 ‘ 𝑌 )  +  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( ( 𝑁 ‘ 𝑌 )  +  𝑌 ) )  =  ( 𝑋  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 15 | 1 2 11 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 17 | 10 14 16 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  ( 𝑁 ‘ 𝑌 ) )  +  𝑌 )  =  𝑋 ) |