Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 3 | 1 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 4 | 3 | ne0d | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |