Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
Assertion | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
3 | 1 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
4 | 3 | ne0d | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |