Metamath Proof Explorer


Theorem grpcl

Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b 𝐵 = ( Base ‘ 𝐺 )
grpcl.p + = ( +g𝐺 )
Assertion grpcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpcl.p + = ( +g𝐺 )
3 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
4 1 2 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
5 3 4 syl3an1 ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )