Metamath Proof Explorer
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011)
|
|
Ref |
Expression |
|
Hypotheses |
grpcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
grpcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
Assertion |
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grpcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
4 |
1 2
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
5 |
3 4
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |