Metamath Proof Explorer
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024)
|
|
Ref |
Expression |
|
Hypotheses |
grpcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
grpcld.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
grpcld.r |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
grpcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
grpcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
Assertion |
grpcld |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grpcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpcld.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpcld.r |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
grpcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
grpcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |