Metamath Proof Explorer


Theorem grpcld

Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses grpcld.b 𝐵 = ( Base ‘ 𝐺 )
grpcld.p + = ( +g𝐺 )
grpcld.r ( 𝜑𝐺 ∈ Grp )
grpcld.x ( 𝜑𝑋𝐵 )
grpcld.y ( 𝜑𝑌𝐵 )
Assertion grpcld ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpcld.b 𝐵 = ( Base ‘ 𝐺 )
2 grpcld.p + = ( +g𝐺 )
3 grpcld.r ( 𝜑𝐺 ∈ Grp )
4 grpcld.x ( 𝜑𝑋𝐵 )
5 grpcld.y ( 𝜑𝑌𝐵 )
6 1 2 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
7 3 4 5 6 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )