| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpidd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 2 |
|
grpidd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
| 3 |
|
grpidd.z |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 4 |
|
grpidd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 5 |
|
grpidd.j |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 9 |
3 1
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 10 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 11 |
10
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ 𝐵 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → + = ( +g ‘ 𝐺 ) ) |
| 13 |
12
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = ( 0 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 14 |
13 4
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 15 |
11 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 16 |
12
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = ( 𝑥 ( +g ‘ 𝐺 ) 0 ) ) |
| 17 |
16 5
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 18 |
11 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 19 |
6 7 8 9 15 18
|
ismgmid2 |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |