| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpidd2.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 2 |
|
grpidd2.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
| 3 |
|
grpidd2.z |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 4 |
|
grpidd2.i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 5 |
|
grpidd2.j |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 6 |
2
|
oveqd |
⊢ ( 𝜑 → ( 0 + 0 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 + 𝑥 ) = ( 0 + 0 ) ) |
| 8 |
|
id |
⊢ ( 𝑥 = 0 → 𝑥 = 0 ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 0 + 𝑥 ) = 𝑥 ↔ ( 0 + 0 ) = 0 ) ) |
| 10 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 0 + 𝑥 ) = 𝑥 ) |
| 11 |
9 10 3
|
rspcdva |
⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
| 12 |
6 11
|
eqtr3d |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 13 |
3 1
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 17 |
14 15 16
|
grpid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ↔ ( 0g ‘ 𝐺 ) = 0 ) ) |
| 18 |
5 13 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ↔ ( 0g ‘ 𝐺 ) = 0 ) ) |
| 19 |
12 18
|
mpbid |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = 0 ) |
| 20 |
19
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |