Metamath Proof Explorer


Theorem grpidd2

Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses grpidd2.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
grpidd2.p ( 𝜑+ = ( +g𝐺 ) )
grpidd2.z ( 𝜑0𝐵 )
grpidd2.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
grpidd2.j ( 𝜑𝐺 ∈ Grp )
Assertion grpidd2 ( 𝜑0 = ( 0g𝐺 ) )

Proof

Step Hyp Ref Expression
1 grpidd2.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
2 grpidd2.p ( 𝜑+ = ( +g𝐺 ) )
3 grpidd2.z ( 𝜑0𝐵 )
4 grpidd2.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
5 grpidd2.j ( 𝜑𝐺 ∈ Grp )
6 2 oveqd ( 𝜑 → ( 0 + 0 ) = ( 0 ( +g𝐺 ) 0 ) )
7 oveq2 ( 𝑥 = 0 → ( 0 + 𝑥 ) = ( 0 + 0 ) )
8 id ( 𝑥 = 0𝑥 = 0 )
9 7 8 eqeq12d ( 𝑥 = 0 → ( ( 0 + 𝑥 ) = 𝑥 ↔ ( 0 + 0 ) = 0 ) )
10 4 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( 0 + 𝑥 ) = 𝑥 )
11 9 10 3 rspcdva ( 𝜑 → ( 0 + 0 ) = 0 )
12 6 11 eqtr3d ( 𝜑 → ( 0 ( +g𝐺 ) 0 ) = 0 )
13 3 1 eleqtrd ( 𝜑0 ∈ ( Base ‘ 𝐺 ) )
14 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
15 eqid ( +g𝐺 ) = ( +g𝐺 )
16 eqid ( 0g𝐺 ) = ( 0g𝐺 )
17 14 15 16 grpid ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0 ( +g𝐺 ) 0 ) = 0 ↔ ( 0g𝐺 ) = 0 ) )
18 5 13 17 syl2anc ( 𝜑 → ( ( 0 ( +g𝐺 ) 0 ) = 0 ↔ ( 0g𝐺 ) = 0 ) )
19 12 18 mpbid ( 𝜑 → ( 0g𝐺 ) = 0 )
20 19 eqcomd ( 𝜑0 = ( 0g𝐺 ) )