Metamath Proof Explorer


Theorem grpideu

Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses grpcl.b 𝐵 = ( Base ‘ 𝐺 )
grpcl.p + = ( +g𝐺 )
grpinvex.p 0 = ( 0g𝐺 )
Assertion grpideu ( 𝐺 ∈ Grp → ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 grpcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpcl.p + = ( +g𝐺 )
3 grpinvex.p 0 = ( 0g𝐺 )
4 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
5 1 2 mndideu ( 𝐺 ∈ Mnd → ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )
6 4 5 syl ( 𝐺 ∈ Grp → ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )