| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplrinv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grplrinv.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grplrinv.i | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  (  0   +  𝐴 )  =  𝐴 ) | 
						
							| 5 | 1 2 3 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  +   0  )  =  𝐴 ) | 
						
							| 6 | 1 2 3 | grplrinv | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑧  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑦 )  =   0  ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑦  +  𝑧 )  =  ( 𝑦  +  𝐴 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑦  +  𝑧 )  =   0   ↔  ( 𝑦  +  𝐴 )  =   0  ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧  +  𝑦 )  =  ( 𝐴  +  𝑦 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑧  +  𝑦 )  =   0   ↔  ( 𝐴  +  𝑦 )  =   0  ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( ( 𝑦  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑦 )  =   0  )  ↔  ( ( 𝑦  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑦 )  =   0  ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑦 )  =   0  )  ↔  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑦 )  =   0  ) ) ) | 
						
							| 13 | 12 | rspcv | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑧  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑧 )  =   0   ∧  ( 𝑧  +  𝑦 )  =   0  )  →  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑦 )  =   0  ) ) ) | 
						
							| 14 | 6 13 | mpan9 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑦 )  =   0  ) ) | 
						
							| 15 | 4 5 14 | jca31 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ( ( (  0   +  𝐴 )  =  𝐴  ∧  ( 𝐴  +   0  )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑦 )  =   0  ) ) ) |