| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpidrcan.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpidrcan.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpidrcan.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  (  0   +  𝑋 )  =  𝑋 ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  (  0   +  𝑋 )  =  𝑋 ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑍  +  𝑋 )  =  (  0   +  𝑋 )  ↔  ( 𝑍  +  𝑋 )  =  𝑋 ) ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝑍  ∈  𝐵 ) | 
						
							| 9 | 1 3 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝐵 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →   0   ∈  𝐵 ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 1 2 | grprcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑍  ∈  𝐵  ∧   0   ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑍  +  𝑋 )  =  (  0   +  𝑋 )  ↔  𝑍  =   0  ) ) | 
						
							| 13 | 7 8 10 11 12 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑍  +  𝑋 )  =  (  0   +  𝑋 )  ↔  𝑍  =   0  ) ) | 
						
							| 14 | 6 13 | bitr3d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑍  +  𝑋 )  =  𝑋  ↔  𝑍  =   0  ) ) |