Metamath Proof Explorer


Theorem grpidpropd

Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014)

Ref Expression
Hypotheses grpidpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
grpidpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
grpidpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
Assertion grpidpropd ( 𝜑 → ( 0g𝐾 ) = ( 0g𝐿 ) )

Proof

Step Hyp Ref Expression
1 grpidpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 grpidpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 grpidpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 3 eqeq1d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ) )
5 3 oveqrspc2v ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( +g𝐾 ) 𝑤 ) = ( 𝑧 ( +g𝐿 ) 𝑤 ) )
6 5 oveqrspc2v ( ( 𝜑 ∧ ( 𝑦𝐵𝑥𝐵 ) ) → ( 𝑦 ( +g𝐾 ) 𝑥 ) = ( 𝑦 ( +g𝐿 ) 𝑥 ) )
7 6 ancom2s ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑦 ( +g𝐾 ) 𝑥 ) = ( 𝑦 ( +g𝐿 ) 𝑥 ) )
8 7 eqeq1d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) )
9 4 8 anbi12d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) )
10 9 anassrs ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) )
11 10 ralbidva ( ( 𝜑𝑥𝐵 ) → ( ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) )
12 11 pm5.32da ( 𝜑 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) ) )
13 1 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( Base ‘ 𝐾 ) ) )
14 1 raleqdv ( 𝜑 → ( ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) )
15 13 14 anbi12d ( 𝜑 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) ) )
16 2 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( Base ‘ 𝐿 ) ) )
17 2 raleqdv ( 𝜑 → ( ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) )
18 16 17 anbi12d ( 𝜑 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) ) )
19 12 15 18 3bitr3d ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) ) )
20 19 iotabidv ( 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) ) )
21 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
22 eqid ( +g𝐾 ) = ( +g𝐾 )
23 eqid ( 0g𝐾 ) = ( 0g𝐾 )
24 21 22 23 grpidval ( 0g𝐾 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐾 ) 𝑥 ) = 𝑦 ) ) )
25 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
26 eqid ( +g𝐿 ) = ( +g𝐿 )
27 eqid ( 0g𝐿 ) = ( 0g𝐿 )
28 25 26 27 grpidval ( 0g𝐿 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐿 ) 𝑥 ) = 𝑦 ) ) )
29 20 24 28 3eqtr4g ( 𝜑 → ( 0g𝐾 ) = ( 0g𝐿 ) )