Step |
Hyp |
Ref |
Expression |
1 |
|
grpidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
grpidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
grpidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ) ) |
5 |
3
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( +g ‘ 𝐾 ) 𝑤 ) = ( 𝑧 ( +g ‘ 𝐿 ) 𝑤 ) ) |
6 |
5
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) ) |
7 |
6
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) ) |
8 |
7
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) |
9 |
4 8
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
11 |
10
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
12 |
11
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
13 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
14 |
1
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) ) |
16 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ) |
17 |
2
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
18 |
16 17
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
19 |
12 15 18
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
20 |
19
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
24 |
21 22 23
|
grpidval |
⊢ ( 0g ‘ 𝐾 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
28 |
25 26 27
|
grpidval |
⊢ ( 0g ‘ 𝐿 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
29 |
20 24 28
|
3eqtr4g |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |