| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpidssd.m | ⊢ ( 𝜑  →  𝑀  ∈  Grp ) | 
						
							| 2 |  | grpidssd.s | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 3 |  | grpidssd.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | grpidssd.c | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | grpidssd.o | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 7 | 3 6 | grpidcl | ⊢ ( 𝑆  ∈  Grp  →  ( 0g ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  ( 0g ‘ 𝑆 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  ( 0g ‘ 𝑆 )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥  =  ( 0g ‘ 𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ↔  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑦  =  ( 0g ‘ 𝑆 )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑦  =  ( 0g ‘ 𝑆 )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑦  =  ( 0g ‘ 𝑆 )  →  ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 )  ↔  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 15 | 11 14 | rspc2va | ⊢ ( ( ( ( 0g ‘ 𝑆 )  ∈  𝐵  ∧  ( 0g ‘ 𝑆 )  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 16 | 8 8 5 15 | syl21anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 18 | 3 17 6 | grplid | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( 0g ‘ 𝑆 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 19 | 2 7 18 | syl2anc2 | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 20 | 16 19 | eqtrd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 21 | 4 8 | sseldd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 25 | 22 23 24 | grpidlcan | ⊢ ( ( 𝑀  ∈  Grp  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑀 ) )  →  ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑆 )  ↔  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 26 | 1 21 21 25 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑆 )  ↔  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 27 | 20 26 | mpbid | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑆 ) ) |