| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinvinv.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinvinv.n | 
							⊢ 𝑁  =  ( invg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinv11.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 4 | 
							
								
							 | 
							grpinv11.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							grpinv11.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( 𝑁 ‘ 𝑋 )  =  ( 𝑁 ‘ 𝑌 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							grpinvinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 9 | 
							
								1 2
							 | 
							grpinvinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 10 | 
							
								3 5 9
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							eqeq12d | 
							⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) )  ↔  𝑋  =  𝑌 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							imbitrid | 
							⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  =  ( 𝑁 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑋  =  𝑌  →  ( 𝑁 ‘ 𝑋 )  =  ( 𝑁 ‘ 𝑌 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							impbid1 | 
							⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  =  ( 𝑁 ‘ 𝑌 )  ↔  𝑋  =  𝑌 ) )  |