Metamath Proof Explorer


Theorem grpinv11

Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses grpinvinv.b 𝐵 = ( Base ‘ 𝐺 )
grpinvinv.n 𝑁 = ( invg𝐺 )
grpinv11.g ( 𝜑𝐺 ∈ Grp )
grpinv11.x ( 𝜑𝑋𝐵 )
grpinv11.y ( 𝜑𝑌𝐵 )
Assertion grpinv11 ( 𝜑 → ( ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 grpinvinv.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvinv.n 𝑁 = ( invg𝐺 )
3 grpinv11.g ( 𝜑𝐺 ∈ Grp )
4 grpinv11.x ( 𝜑𝑋𝐵 )
5 grpinv11.y ( 𝜑𝑌𝐵 )
6 fveq2 ( ( 𝑁𝑋 ) = ( 𝑁𝑌 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = ( 𝑁 ‘ ( 𝑁𝑌 ) ) )
7 6 adantl ( ( 𝜑 ∧ ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = ( 𝑁 ‘ ( 𝑁𝑌 ) ) )
8 1 2 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
9 3 4 8 syl2anc ( 𝜑 → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
10 9 adantr ( ( 𝜑 ∧ ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
11 1 2 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵 ) → ( 𝑁 ‘ ( 𝑁𝑌 ) ) = 𝑌 )
12 3 5 11 syl2anc ( 𝜑 → ( 𝑁 ‘ ( 𝑁𝑌 ) ) = 𝑌 )
13 12 adantr ( ( 𝜑 ∧ ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ) → ( 𝑁 ‘ ( 𝑁𝑌 ) ) = 𝑌 )
14 7 10 13 3eqtr3d ( ( 𝜑 ∧ ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ) → 𝑋 = 𝑌 )
15 14 ex ( 𝜑 → ( ( 𝑁𝑋 ) = ( 𝑁𝑌 ) → 𝑋 = 𝑌 ) )
16 fveq2 ( 𝑋 = 𝑌 → ( 𝑁𝑋 ) = ( 𝑁𝑌 ) )
17 15 16 impbid1 ( 𝜑 → ( ( 𝑁𝑋 ) = ( 𝑁𝑌 ) ↔ 𝑋 = 𝑌 ) )