Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
grpinv11.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
grpinv11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
grpinv11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) |
8 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
9 |
3 4 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
11 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
12 |
3 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
14 |
7 10 13
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) |
15 |
14
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) |
17 |
15 16
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |