| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinvadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpinvadd.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 7 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 8 |
7
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 9 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 |
9
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 12 |
4 8 10 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 13 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 14 |
4 5 6 12 13
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 16 |
1 2 15 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 20 |
4 6 8 10 19
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + ( 𝑁 ‘ 𝑌 ) ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 21 |
1 2 15
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 22 |
4 10 21
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 23 |
18 20 22
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) ) = ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 25 |
1 2 15 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 27 |
14 24 26
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 28 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 29 |
1 2 15 3
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ↔ ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 30 |
4 28 12 29
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ↔ ( ( 𝑋 + 𝑌 ) + ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 31 |
27 30
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |