Metamath Proof Explorer


Theorem grpinvcld

Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpinvcld.b 𝐵 = ( Base ‘ 𝐺 )
grpinvcld.n 𝑁 = ( invg𝐺 )
grpinvcld.g ( 𝜑𝐺 ∈ Grp )
grpinvcld.1 ( 𝜑𝑋𝐵 )
Assertion grpinvcld ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpinvcld.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvcld.n 𝑁 = ( invg𝐺 )
3 grpinvcld.g ( 𝜑𝐺 ∈ Grp )
4 grpinvcld.1 ( 𝜑𝑋𝐵 )
5 1 2 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )
6 3 4 5 syl2anc ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝐵 )