Step |
Hyp |
Ref |
Expression |
1 |
|
grpinveu.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinveu.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinveu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
1 2 3
|
grpinvex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
5 |
|
eqtr3 |
⊢ ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
6 |
1 2
|
grprcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ↔ 𝑦 = 𝑧 ) ) |
7 |
5 6
|
syl5ib |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
8 |
7
|
3exp2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) ) |
9 |
8
|
com24 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) ) |
10 |
9
|
imp41 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
11 |
10
|
an32s |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
12 |
11
|
expd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
13 |
12
|
ralrimdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
14 |
13
|
ancld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) ) |
15 |
14
|
reximdva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) ) |
16 |
4 15
|
mpd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑧 + 𝑋 ) = 0 ) ) |
19 |
18
|
reu8 |
⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
20 |
16 19
|
sylibr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |