Metamath Proof Explorer


Theorem grpinveu

Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinveu.b 𝐵 = ( Base ‘ 𝐺 )
grpinveu.p + = ( +g𝐺 )
grpinveu.o 0 = ( 0g𝐺 )
Assertion grpinveu ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ∃! 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 grpinveu.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinveu.p + = ( +g𝐺 )
3 grpinveu.o 0 = ( 0g𝐺 )
4 1 2 3 grpinvex ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ∃ 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 )
5 eqtr3 ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) )
6 1 2 grprcan ( ( 𝐺 ∈ Grp ∧ ( 𝑦𝐵𝑧𝐵𝑋𝐵 ) ) → ( ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ↔ 𝑦 = 𝑧 ) )
7 5 6 syl5ib ( ( 𝐺 ∈ Grp ∧ ( 𝑦𝐵𝑧𝐵𝑋𝐵 ) ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) )
8 7 3exp2 ( 𝐺 ∈ Grp → ( 𝑦𝐵 → ( 𝑧𝐵 → ( 𝑋𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) )
9 8 com24 ( 𝐺 ∈ Grp → ( 𝑋𝐵 → ( 𝑧𝐵 → ( 𝑦𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) )
10 9 imp41 ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ 𝑧𝐵 ) ∧ 𝑦𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) )
11 10 an32s ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑧𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) )
12 11 expd ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ 𝑦𝐵 ) ∧ 𝑧𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) )
13 12 ralrimdva ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ 𝑦𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ∀ 𝑧𝐵 ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) )
14 13 ancld ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ 𝑦𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧𝐵 ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) ) )
15 14 reximdva ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ∃ 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 → ∃ 𝑦𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧𝐵 ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) ) )
16 4 15 mpd ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ∃ 𝑦𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧𝐵 ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) )
17 oveq1 ( 𝑦 = 𝑧 → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) )
18 17 eqeq1d ( 𝑦 = 𝑧 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑧 + 𝑋 ) = 0 ) )
19 18 reu8 ( ∃! 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 ↔ ∃ 𝑦𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧𝐵 ( ( 𝑧 + 𝑋 ) = 0𝑦 = 𝑧 ) ) )
20 16 19 sylibr ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ∃! 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 )